Copied to
clipboard

G = C4×C322C8order 288 = 25·32

Direct product of C4 and C322C8

direct product, metabelian, soluble, monomial, A-group

Aliases: C4×C322C8, (C3×C12)⋊3C8, C323(C4×C8), (C6×C12).4C4, C3⋊Dic36C8, C62.3(C2×C4), (C3×C6).3C42, C2.2(C4×C32⋊C4), (C3×C6).24(C2×C8), C2.2(C2×C322C8), C2.2(C3⋊S33C8), C22.8(C2×C32⋊C4), (C2×C4).10(C32⋊C4), C3⋊Dic3.27(C2×C4), (C2×C3⋊Dic3).13C4, (C4×C3⋊Dic3).14C2, (C2×C322C8).11C2, (C2×C3⋊Dic3).107C22, SmallGroup(288,423)

Series: Derived Chief Lower central Upper central

C1C32 — C4×C322C8
C1C32C3×C6C3⋊Dic3C2×C3⋊Dic3C2×C322C8 — C4×C322C8
C32 — C4×C322C8
C1C2×C4

Generators and relations for C4×C322C8
 G = < a,b,c,d | a4=b3=c3=d8=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, dbd-1=b-1c >

Subgroups: 272 in 74 conjugacy classes, 30 normal (16 characteristic)
C1, C2, C3, C4, C4, C22, C6, C8, C2×C4, C2×C4, C32, Dic3, C12, C2×C6, C42, C2×C8, C3×C6, C2×Dic3, C2×C12, C4×C8, C3⋊Dic3, C3×C12, C62, C4×Dic3, C322C8, C2×C3⋊Dic3, C6×C12, C4×C3⋊Dic3, C2×C322C8, C4×C322C8
Quotients: C1, C2, C4, C22, C8, C2×C4, C42, C2×C8, C4×C8, C32⋊C4, C322C8, C2×C32⋊C4, C3⋊S33C8, C4×C32⋊C4, C2×C322C8, C4×C322C8

Smallest permutation representation of C4×C322C8
On 96 points
Generators in S96
(1 77 47 15)(2 78 48 16)(3 79 41 9)(4 80 42 10)(5 73 43 11)(6 74 44 12)(7 75 45 13)(8 76 46 14)(17 56 88 27)(18 49 81 28)(19 50 82 29)(20 51 83 30)(21 52 84 31)(22 53 85 32)(23 54 86 25)(24 55 87 26)(33 69 57 89)(34 70 58 90)(35 71 59 91)(36 72 60 92)(37 65 61 93)(38 66 62 94)(39 67 63 95)(40 68 64 96)
(2 23 68)(4 70 17)(6 19 72)(8 66 21)(10 34 27)(12 29 36)(14 38 31)(16 25 40)(42 90 88)(44 82 92)(46 94 84)(48 86 96)(50 60 74)(52 76 62)(54 64 78)(56 80 58)
(1 22 67)(2 23 68)(3 69 24)(4 70 17)(5 18 71)(6 19 72)(7 65 20)(8 66 21)(9 33 26)(10 34 27)(11 28 35)(12 29 36)(13 37 30)(14 38 31)(15 32 39)(16 25 40)(41 89 87)(42 90 88)(43 81 91)(44 82 92)(45 93 83)(46 94 84)(47 85 95)(48 86 96)(49 59 73)(50 60 74)(51 75 61)(52 76 62)(53 63 77)(54 64 78)(55 79 57)(56 80 58)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,77,47,15)(2,78,48,16)(3,79,41,9)(4,80,42,10)(5,73,43,11)(6,74,44,12)(7,75,45,13)(8,76,46,14)(17,56,88,27)(18,49,81,28)(19,50,82,29)(20,51,83,30)(21,52,84,31)(22,53,85,32)(23,54,86,25)(24,55,87,26)(33,69,57,89)(34,70,58,90)(35,71,59,91)(36,72,60,92)(37,65,61,93)(38,66,62,94)(39,67,63,95)(40,68,64,96), (2,23,68)(4,70,17)(6,19,72)(8,66,21)(10,34,27)(12,29,36)(14,38,31)(16,25,40)(42,90,88)(44,82,92)(46,94,84)(48,86,96)(50,60,74)(52,76,62)(54,64,78)(56,80,58), (1,22,67)(2,23,68)(3,69,24)(4,70,17)(5,18,71)(6,19,72)(7,65,20)(8,66,21)(9,33,26)(10,34,27)(11,28,35)(12,29,36)(13,37,30)(14,38,31)(15,32,39)(16,25,40)(41,89,87)(42,90,88)(43,81,91)(44,82,92)(45,93,83)(46,94,84)(47,85,95)(48,86,96)(49,59,73)(50,60,74)(51,75,61)(52,76,62)(53,63,77)(54,64,78)(55,79,57)(56,80,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)>;

G:=Group( (1,77,47,15)(2,78,48,16)(3,79,41,9)(4,80,42,10)(5,73,43,11)(6,74,44,12)(7,75,45,13)(8,76,46,14)(17,56,88,27)(18,49,81,28)(19,50,82,29)(20,51,83,30)(21,52,84,31)(22,53,85,32)(23,54,86,25)(24,55,87,26)(33,69,57,89)(34,70,58,90)(35,71,59,91)(36,72,60,92)(37,65,61,93)(38,66,62,94)(39,67,63,95)(40,68,64,96), (2,23,68)(4,70,17)(6,19,72)(8,66,21)(10,34,27)(12,29,36)(14,38,31)(16,25,40)(42,90,88)(44,82,92)(46,94,84)(48,86,96)(50,60,74)(52,76,62)(54,64,78)(56,80,58), (1,22,67)(2,23,68)(3,69,24)(4,70,17)(5,18,71)(6,19,72)(7,65,20)(8,66,21)(9,33,26)(10,34,27)(11,28,35)(12,29,36)(13,37,30)(14,38,31)(15,32,39)(16,25,40)(41,89,87)(42,90,88)(43,81,91)(44,82,92)(45,93,83)(46,94,84)(47,85,95)(48,86,96)(49,59,73)(50,60,74)(51,75,61)(52,76,62)(53,63,77)(54,64,78)(55,79,57)(56,80,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,77,47,15),(2,78,48,16),(3,79,41,9),(4,80,42,10),(5,73,43,11),(6,74,44,12),(7,75,45,13),(8,76,46,14),(17,56,88,27),(18,49,81,28),(19,50,82,29),(20,51,83,30),(21,52,84,31),(22,53,85,32),(23,54,86,25),(24,55,87,26),(33,69,57,89),(34,70,58,90),(35,71,59,91),(36,72,60,92),(37,65,61,93),(38,66,62,94),(39,67,63,95),(40,68,64,96)], [(2,23,68),(4,70,17),(6,19,72),(8,66,21),(10,34,27),(12,29,36),(14,38,31),(16,25,40),(42,90,88),(44,82,92),(46,94,84),(48,86,96),(50,60,74),(52,76,62),(54,64,78),(56,80,58)], [(1,22,67),(2,23,68),(3,69,24),(4,70,17),(5,18,71),(6,19,72),(7,65,20),(8,66,21),(9,33,26),(10,34,27),(11,28,35),(12,29,36),(13,37,30),(14,38,31),(15,32,39),(16,25,40),(41,89,87),(42,90,88),(43,81,91),(44,82,92),(45,93,83),(46,94,84),(47,85,95),(48,86,96),(49,59,73),(50,60,74),(51,75,61),(52,76,62),(53,63,77),(54,64,78),(55,79,57),(56,80,58)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)]])

48 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E···4L6A···6F8A···8P12A···12H
order12223344444···46···68···812···12
size11114411119···94···49···94···4

48 irreducible representations

dim1111111144444
type++++-+
imageC1C2C2C4C4C4C8C8C32⋊C4C322C8C2×C32⋊C4C3⋊S33C8C4×C32⋊C4
kernelC4×C322C8C4×C3⋊Dic3C2×C322C8C322C8C2×C3⋊Dic3C6×C12C3⋊Dic3C3×C12C2×C4C4C22C2C2
# reps1128228824244

Matrix representation of C4×C322C8 in GL5(𝔽73)

460000
027000
002700
000270
000027
,
10000
01000
00100
00001
0007272
,
10000
0727200
01000
00001
0007272
,
630000
00010
00001
033100
0287000

G:=sub<GL(5,GF(73))| [46,0,0,0,0,0,27,0,0,0,0,0,27,0,0,0,0,0,27,0,0,0,0,0,27],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,1,72],[1,0,0,0,0,0,72,1,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,1,72],[63,0,0,0,0,0,0,0,3,28,0,0,0,31,70,0,1,0,0,0,0,0,1,0,0] >;

C4×C322C8 in GAP, Magma, Sage, TeX

C_4\times C_3^2\rtimes_2C_8
% in TeX

G:=Group("C4xC3^2:2C8");
// GroupNames label

G:=SmallGroup(288,423);
// by ID

G=gap.SmallGroup(288,423);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,64,100,9413,691,12550,2372]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^3=c^3=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,d*b*d^-1=b^-1*c>;
// generators/relations

׿
×
𝔽